Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Immunobiology ; 228(3): 152393, 2023 05.
Article in English | MEDLINE | ID: covidwho-2320806

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Testing , Pandemics/prevention & control , Complement System Proteins
2.
Immunology ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2281411

ABSTRACT

Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade is considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in COVID-19 to date, comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalized COVID-19 patients collected across the hospitalization period as part of the UK ISARIC4C (International Acute Respiratory and Emerging Infection Consortium) study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to healthy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples were associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.

3.
Elife ; 112022 05 19.
Article in English | MEDLINE | ID: covidwho-1856224

ABSTRACT

The outcome of infection is dependent on the ability of viruses to manipulate the infected cell to evade immunity, and the ability of the immune response to overcome this evasion. Understanding this process is key to understanding pathogenesis, genetic risk factors, and both natural and vaccine-induced immunity. SARS-CoV-2 antagonises the innate interferon response, but whether it manipulates innate cellular immunity is unclear. An unbiased proteomic analysis determined how cell surface protein expression is altered on SARS-CoV-2-infected lung epithelial cells, showing downregulation of activating NK ligands B7-H6, MICA, ULBP2, and Nectin1, with minimal effects on MHC-I. This occurred at the level of protein synthesis, could be mediated by Nsp1 and Nsp14, and correlated with a reduction in NK cell activation. This identifies a novel mechanism by which SARS-CoV-2 host-shutoff antagonises innate immunity. Later in the disease process, strong antibody-dependent NK cell activation (ADNKA) developed. These responses were sustained for at least 6 months in most patients, and led to high levels of pro-inflammatory cytokine production. Depletion of spike-specific antibodies confirmed their dominant role in neutralisation, but these antibodies played only a minor role in ADNKA compared to antibodies to other proteins, including ORF3a, Membrane, and Nucleocapsid. In contrast, ADNKA induced following vaccination was focussed solely on spike, was weaker than ADNKA following natural infection, and was not boosted by the second dose. These insights have important implications for understanding disease progression, vaccine efficacy, and vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies , Antibodies, Viral , Humans , Killer Cells, Natural , Proteomics
4.
Immunology ; 165(2): 250-259, 2022 02.
Article in English | MEDLINE | ID: covidwho-1511322

ABSTRACT

Accurate assessment of SARS-CoV-2 immunity is critical in evaluating vaccine efficacy and devising public health policies. Whilst the exact nature of effective immunity remains incompletely defined, SARS-CoV-2-specific T-cell responses are a critical feature that will likely form a key correlate of protection against COVID-19. Here, we developed and optimized a high-throughput whole blood-based assay to determine the T-cell response associated with prior SARS-CoV-2 infection and/or vaccination amongst 231 healthy donors and 68 cancer patients. Following overnight in vitro stimulation with SARS-CoV-2-specific peptides, blood plasma samples were analysed for TH 1-type cytokines. Highly significant differential IFN-γ+ /IL-2+ SARS-CoV-2-specific T-cell responses were seen amongst previously infected COVID-19-positive healthy donors in comparison with unknown / naïve individuals (p < 0·0001). IFN-γ production was more effective at identifying asymptomatic donors, demonstrating higher sensitivity (96·0% vs. 83·3%) but lower specificity (84·4% vs. 92·5%) than measurement of IL-2. A single COVID-19 vaccine dose induced IFN-γ and/or IL-2 SARS-CoV-2-specific T-cell responses in 116 of 128 (90·6%) healthy donors, reducing significantly to 27 of 56 (48·2%) when measured in cancer patients (p < 0·0001). A second dose was sufficient to boost T-cell responses in the majority (90·6%) of cancer patients, albeit IFN-γ+ responses were still significantly lower overall than those induced in healthy donors (p = 0·034). Three-month post-vaccination T-cell responses also declined at a faster rate in cancer patients. Overall, this cost-effective standardizable test ensures accurate and comparable assessments of SARS-CoV-2-specific T-cell responses amenable to widespread population immunity testing, and identifies individuals at greater need of booster vaccinations.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Carrier State/immunology , Immunity, Cellular , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Th1 Cells/immunology , Vaccination , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/prevention & control , Female , Humans , Interferon-gamma/immunology , Male , Middle Aged
5.
iScience ; 24(11): 103215, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1446746

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening disease occurring several weeks after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Deep immune profiling showed acute MIS-C patients had highly activated neutrophils, classical monocytes and memory CD8+ T-cells, with increased frequencies of B-cell plasmablasts and double-negative B-cells. Post treatment samples from the same patients, taken during symptom resolution, identified recovery-associated immune features including increased monocyte CD163 levels, emergence of a new population of immature neutrophils and, in some patients, transiently increased plasma arginase. Plasma profiling identified multiple features shared by MIS-C, Kawasaki Disease and COVID-19 and that therapeutic inhibition of IL-6 may be preferable to IL-1 or TNF-α. We identified several potential mechanisms of action for IVIG, the most commonly used drug to treat MIS-C. Finally, we showed systemic complement activation with high plasma C5b-9 levels is common in MIS-C suggesting complement inhibitors could be used to treat the disease.

6.
Ann Clin Biochem ; 58(2): 123-131, 2021 03.
Article in English | MEDLINE | ID: covidwho-1067019

ABSTRACT

BACKGROUND: Serological assays for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have roles in seroepidemiology, convalescent plasma-testing, antibody durability and vaccine studies. Currently, SARS-CoV-2 serology is performed using serum/plasma collected by venepuncture. Dried blood spot (DBS) testing offers significant advantages as it is minimally invasive, avoids venepuncture with specimens being mailed to the laboratory. METHODS: A pathway utilizing a newborn screening laboratory infrastructure was developed using an enzyme-linked immunosorbent assay to detect IgG antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein in DBS specimens. Paired plasma and DBS specimens from SARS-CoV-2 antibody-positive and -negative subjects and polymerase chain reaction positive subjects were tested. DBS specimen stability, effect of blood volume and punch location were also evaluated. RESULTS: DBS specimens from antibody-negative (n = 85) and -positive (n = 35) subjects and polymerase chain reaction positive subjects (n = 11) had a mean (SD; range) optical density (OD) of 0.14 (0.046; 0.03-0.27), 0.98 (0.41; 0.31-1.64) and 1.12 (0.37; 0.49-1.54), respectively. An action value OD >0.28 correctly assigned all cases. The weighted Deming regression for comparison of the DBS and the plasma assay yielded: y = 0.004041 + 1.005x, r = 0.991, Sy/x 0.171, n = 82. Extraction efficiency of antibodies from DBS specimens was >99%. DBS specimens were stable for at least 28 days at ambient room temperature and humidity. CONCLUSIONS: SARS-CoV-2 IgG receptor-binding domain antibodies can be reliably detected in DBS specimens. DBS serological testing offers lower costs than either point of care or serum/plasma assays that require patient travel, phlebotomy and hospital/clinic resources; the development of a DBS assay may be particularly important for resource poor settings.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing , COVID-19/immunology , Dried Blood Spot Testing , Immunoglobulin G/immunology , SARS-CoV-2/immunology , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Spike Glycoprotein, Coronavirus/immunology
7.
PLoS One ; 16(1): e0245382, 2021.
Article in English | MEDLINE | ID: covidwho-1048816

ABSTRACT

Antibody responses are important in the control of viral respiratory infection in the human host. What is not clear for SARS-CoV-2 is how rapidly this response occurs, or when antibodies with protective capability evolve. Hence, defining the events of SARS-CoV-2 seroconversion and the time frame for the development of antibodies with protective potential may help to explain the different clinical presentations of COVID-19. Furthermore, accurate descriptions of seroconversion are needed to inform the best use of serological assays for diagnostic testing and serosurveillance studies. Here, we describe the humoral responses in a cohort of hospitalised COVID-19 patients (n = 19) shortly following the onset of symptoms. Commercial and 'in-house' serological assays were used to measure IgG antibodies against different SARS-CoV-2 structural antigens-Spike (S) S1 sub-unit and Nucleocapsid protein (NP)-and to assess the potential for virus neutralisation mediated specifically by inhibition of binding between the viral attachment protein (S protein) and cognate receptor (ACE-2). Antibody response kinetics varied amongst the cohort, with patients seroconverting within 1 week, between 1-2 weeks, or after 2 weeks, following symptom onset. Anti-NP IgG responses were generally detected earlier, but reached maximum levels slower, than anti-S1 IgG responses. The earliest IgG antibodies produced by all patients included those that recognised the S protein receptor-binding domain (RBD) and were capable of inhibiting binding to ACE-2. These data revealed events and patterns of SARS-CoV-2 seroconversion that may be important predictors of the outcome of infection and guide the delivery of clinical services in the COVID-19 response.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Aged , Aged, 80 and over , Antibodies, Viral/immunology , Cohort Studies , Coronavirus Nucleocapsid Proteins/chemistry , Female , Hospitalization , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Phosphoproteins/chemistry , SARS-CoV-2/chemistry , Seroconversion , Spike Glycoprotein, Coronavirus/chemistry , Wales
8.
Nat Commun ; 11(1): 6385, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-977267

ABSTRACT

The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. This unusual clinical course is consistent with a contribution of antibodies to both viral clearance and progression to severe disease. In the absence of these confounders, we take an experimental medicine approach to examine the in vivo utility of remdesivir. Over two independent courses of treatment, we observe a temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Immunity, Humoral/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/therapeutic use , Adult , Alanine/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/virology , Fever/prevention & control , Humans , Immunity, Humoral/immunology , Lymphocyte Count , Male , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL